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Abstract
Recent experimental results have shown that the recoil energies of electrons elastically scattered
by light and heavy atoms can be resolved for an energetic electron beam and at large scattering
angles. Full understanding of the scattering processes involved is helpful to sample
characterization, and for providing more knowledge about electron inelastic mean free path. In
this work we use a Monte Carlo simulation method to quantitatively study the energy shift, the
Doppler broadening and, especially, the peak intensity ratio for an overlayer/substrate sample.
Recoil energy in the electron elastic scattering events is calculated on the basis of our previous
Monte Carlo simulation model by taking account of the kinetic energy of atoms. An anisotropic
distribution of the velocity direction of the atoms, the Maxwell–Boltzmann thermal energy
distribution and also the multiple scattering of electrons are considered in the simulation. By
introducing a polarized momentum a good agreement has been obtained on the position shift of
the quasi-elastic peak between the calculation and experiment. The calculation also shows a
quantitative agreement with the experimental results on the peak intensity ratio between
different elements for a Ge/C overlayer sample. It is illustrated that the multiple-scattering
effect is remarkable for a high energy beam.

1. Introduction

Electron elastic scattering at surfaces provides an effective
way of determining the physical parameters related to electron
transport processes, such as electron inelastic mean free path
(IMFP), by elastic peak electron spectroscopy (EPES) [1].
The recoil effect in quasi-elastic scattering of electrons was
first described by Boersch et al as early as 1967 [2]. It was
shown that there is an energy loss involved in large-angle
elastic scattering events, consistent with momentum transfer to
a single atom in the scattering event. The quasi-elastic peak is a
marked feature in EPES spectra. From then on, the recoil effect
of the elastic peak in electron spectroscopy has been paid much
attention. A lot of experimental works have been performed
to study the energy shift and broadening of the quasi-elastic
peak spectra for the elemental solids [3–5], organic polymer

solids [6–8], compounds [9] and overlayer systems [10–13] by
varying the atomic number of the sample. Recently it has been
shown that, by using an energetic electron beam (20–40 keV)
and at large scattering angles, the recoil energies for atoms with
large mass difference can be resolved [9–13]. The technique is
termed electron Rutherford backscattering (ERBS) [9].

On the other hand, Monte Carlo simulations of the energy
shift and recoil broadening of the elastic peak in electron
spectra were performed later for similar systems by using
classical approaches [14, 15]. Also, a quantum scattering
theory including the recoil effect has been proposed for dealing
with elastically scattered electrons and photoelectrons involved
in electron spectra [16]. However, these works have not yet
derived the intensity ratio between peaks that are attributed
to different elements, and only one simple analysis of the
intensity ratio was given, in [12]. Accurate description of the
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peak intensity ratio as well as peak shape provides important
information on electron scattering processes involved and
related physical mechanisms, which will certainly be helpful
for providing more knowledge about the electron IMFP and
sample characterization—such as for unique determination of
the thickness of an overlayer, in-depth distribution of elements
and composition.

In this paper, we use a Monte Carlo simulation
method to quantitatively study the energy shift, the Doppler
broadening and, especially, the peak intensity ratio for an
overlayer/substrate system. The simulation is chiefly based on
our previous Monte Carlo model of electron scattering [17–19],
but also considering the Maxwell–Boltzmann thermal energy
distribution of atoms with an anisotropic distribution of the
velocity direction by introducing a polarized momentum
component. For comparison with experimental observation,
the simulation of quasi-elastic scattering of electrons of
energies about 15–30 keV from a Ge/C overlayer either
in reflection geometry or transmission geometry has been
performed. The simulated peak intensity ratio agrees very
well with the experimental data. The anisotropic velocity
distribution has successfully described the position of the
energy shift of the elastic peak.

2. Theory

2.1. Recoil energy

The classical model of the electron quasi-elastic scattering
from a free atom is used for its simplicity and validity in
most cases [14, 15]. Went and Vos [20] have considered in
detail why the electron quasi-elastic scattering can certainly
be described as scattering by a free atom, while the fact that
the atom is part of a crystal is assumed not to influence
the result. Thus, it is convenient and reasonable to use the
binary encounter approximation instead of the electron–lattice
interaction for the electron quasi-elastic scattering, for the
impulse approximation is valid here. If an incoming electron
of mass m with momentum P is elastically scattered over an
angle θ by an atom of mass M , the momentum change is
approximately about q � 2P sin(θ/2). Assuming that the
target atom is at rest initially before the collision; the energy
transferred from an electron to an atom is

Er0 = 2m E[(M + m sin2 θ) −
√

M2 − m2 sin2 θ cos θ ]
(M + m)2

,

(1)
where E = P2/2m denotes the kinetic energy of the electron.
As m � M , the recoil energy of the electron is approximated
as

Er0 � q2/2M = 4m

M
E sin2(θ/2). (2)

More realistically, the target atoms have a kinetic energy due
to thermal motion. The recoil energy is then given by the
following relation:

Er = (q + k)2

2M
− k2

2M
= q2

2M
+ q · k

M
, (3)

where k is the initial momentum of the target atoms. The
momentum k here is usually considered as isotropically
distributed. The first term in the above equation represents
the energy shift of the elastic peak and the second one is the
Doppler broadening term due to the vibration of the target
atoms in different directions. The classical thermal vibration
model has been used to describe the motion of atoms in a
solid by considering that the atoms will behave like a classical
gas and will have an average kinetic energy 3kT /2 in the
present high temperature case. Only in the low temperature
limit should quantum physics be employed to relate Doppler
broadening to the interaction of electrons with phonon modes
of a lattice.

It has been shown that the recoil energy calculated by
using the above classical approach could not yield a good
agreement with the experimental value, and a deviation of the
peak position was found in comparison [14, 15, 21]. For the
cause of such deviation Kwei et al [15] considered that the
recoil energy should be centered at the most probable value
of this loss for vibrating atoms rather than for atoms at rest.
However, even taking into account the thermal motion of atoms
the simulation overestimates recoil energy when compared
with experiments [14]. The reason is quite obvious: the
statistical averaging of the second term in equation (3) for
isotropic vibrating atoms gives vanishing contribution to the
recoil energy and, thus, the simple treatment using equation (3)
yields the same peak position as for rest atoms except that
the peak is broadened. Vos and Went [21] suggested that
the classical thermal distribution cannot describe experiment,
considering the differences in peak position and shapes
between experimental and expected results. In order to solve
this problem, an improved scheme is introduced in this paper.
The main idea is to consider that the thermal vibration of target
atoms may no longer be regarded as isotropically distributed,
for the Coulomb interaction between an energetic incident
electron and the target atom can influence the atomic motion
through the polarization of atomic electron clouds.

Hence, a proper approach to the description of the
anisotropic vibration of the target atoms should be necessary.
We assume in the classical approximation that the anisotropic
vibration may be described by an elliptical distribution and,
accordingly, the momentum vector of atomic motion is
composed of an isotropic momentum k and a preferential
oriented momentum k0. In order to estimate the value and
the direction of the momentum component k0 at least for
qualitative analysis, we now analyze the difference between
the real momentum change q′ in an experiment and the ideal
momentum change q for a binary collision in a classical
theory. The experimental fact indicates q ′ < q which we
attribute to the effect of atomic polarization during collision
between charged particles. This is because the electron–atom
scattering dynamics accompanies the change of electrostatic
potential of an electron, with the induced polarization of
atomic electron clouds. These two factors then drive the
motion of the atomic nucleus. As the polarization is a
directional effect, it is quite reasonable to treat the thermal
vibration of target atoms as anisotropically distributed, but
not as a simple isotropic distribution for a collision between
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hard spheres. Then we can decompose the momentum of
the nucleus into two components, an isotropic momentum
k and a preferentially oriented momentum k0. This simple
phenomenological treatment averages the overall polarization
effect for an amount of scattering events into a single term
within the framework of a classical binary collision theory.

The recoil energy is thus now rewritten as

Er = (q + k + k0)
2

2M
− (k + k0)

2

2M
= q2

2M
+ q · k

M
+ q · k0

M
,

(4)
where (q + k + k0)

2/2M and (k + k0)
2/2M are the kinetic

energies of the atoms before and after the collision. The
momentum conservation and energy conservation are valid in
such an expression. In addition to the two terms in equation (3),
which describe the energy shift and the Doppler broadening of
the elastic peak, the third term in the above equation treats the
negative shifting of the peak position as due to the anisotropic
vibration of the target atoms.

For we can also write the recoil energy as

Er = (q′ + k)2

2M
− k2

2M
, (5)

by keeping the same form as in equation (3) but replacing the
ideal q with the measured q′; k0 is then given by

k0 = − q
2q2

[(q2 − q ′2) + 2(q − q′) · k]. (6)

Therefore, k0 is oppositional to q and its effect is to reduce
the value of q . In the bracket of above equation, the first
term represents the position shift of the peaks, which has
been introduced in the present Monte Carlo simulation model.
The second term is a minor Doppler broadening term for
the shifting. In our simulation model, we have reasonably
neglected this minor and symmetrical broadening term. The
peak position shift is thus taken as k0 = (q2 − q ′2)/2q.

To be more clear, we rewrite equation (4) as follows:

Er ≈
[

1 − k0

P

1

sin(θ/2)

]
q2

2M
+ q · k

M
. (7)

The first term can thus be reasonably taken as the most
probable value of the recoil loss energy for anisotropic
vibrating atoms and the second term is for the Doppler
broadening. It is shown that the most probable value of the
recoil energy loss corresponding to the peak position of the
spectra will tend to be smaller than Er0, as indicated by the
experimental facts. Here, we have neglected the final state
effects in the above discussion for it appears to be only a minor
part for the deviation of the elastic peak positions [21].

In our Monte Carlo simulation, it is convenient to use the
scalar form for each scattering event along electron trajectories:

Er = 2m

M
E

{[
1 − k0

P

1

sin(θ/2)

]
(1 − cos θ)

+
√

Mε

m E
(cos ϑ − cos θ cos ϑ − sin θ sin ϑ cos ϕ)

}
, (8)

where ε is the kinetic energy of the isotropic vibration of the
target atoms, whose value follows the Maxwell–Boltzmann
thermal energy distribution with the mean kinetic energy
Ek = 3kT /2; ϑ and ϕ are the polar and azimuthal angles
characterizing the velocity direction of an atom related to the
moving direction of an incident electron.

2.1.1. Electron elastic scattering. Monte Carlo simulation is
based on the tracing of electron trajectories made by the joining
of randomly sampled electron scattering events [17, 22].
For the treatment of electron elastic scattering, the Mott
cross section [23] with the Thomas–Fermi–Dirac atomic
potential [24] is employed:

dσe

d�
= | f (θ)|2 + |g(θ)|2, (9)

where the scattering amplitudes

f (θ) = 1

2ik

∞∑

l=0

{(l + 1)(e2iδ+
l − 1) + l(e2iδ−

l − 1)}Pl(cos θ);

g(θ) = 1

2ik

∞∑

l=1

{−e2iδ+
l + e2iδ−

l }P1
l (cos θ),

(10)
are calculated by the partial wave expansion method [25]. In
the above equation Pl(cos θ) and P1

l (cos θ) are, respectively,
the Legendre and the first-order associated Legendre functions;
δ+

l and δ−
l are spin-up and spin-down phase shifts of the 	th

partial wave, respectively.

2.2. Electron inelastic scattering

A dielectric function modeling based on Penn’s theory [26]
yields the Bethe stopping powers at high energies; the
calculated electron IMFP fits also the experimental data over
a wide energy region from several eV to above several keV
for many elements and compounds [27–29]. We employed
this dielectric function modeling to treat electron inelastic
scattering in the simulation. The double-differential cross
section for inelastic scattering of electrons in a solid is
represented in dielectric theory in terms of the energy loss
function Im{−1/ε(q, ω)} as

d2λ−1
in

d(h̄ω) dq
= 1

πa0 E
Im

{ −1

ε(q, ω)

}
1

q
, (11)

where a0 is the Bohr radius, h̄ω is the energy loss, h̄q is
the momentum transfer from an electron of kinetic energy
E penetrating into a solid of dielectric function ε(q, ω) and
λin is the electron IMFP. The energy loss distribution and
angular distribution of electron inelastic scattering, which are
necessary for a Monte Carlo simulation of electron individual
inelastic scattering events, can be obtained from the above
expression by assuming a dispersion relation [17, 30].

3. Results and discussion

For comparison with the experimental results [12], the
calculation conditions are set the same as in the experiment:
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Table 1. List of the parameters used in the simulation.

Element
Density
(g cm−3)

Thickness
(Å)

Ek

(meV)
k0 (Å

−1
)

(θ = 45◦)

C 2.267 350 108 [31] 4.77
Ge 5.32 2, 20 38.8 5.24

(1) the samples are composed of a 0.2 or 2 nm thick Ge layer
on a carbon film 35 nm thick; (2) the incident electron beam
energy is 15–30 keV; (3) the electron beam has energy width
of 0.23 eV (FWHM), and the energy resolution of an energy
analyzer is 0.14 eV; these two values are used for convolutions
of a Gaussian distribution with the directly simulated spectra
at an ideal resolution of 20 meV; (4) the scattering angle is
45◦; the acceptance polar angle range, θ � ±1◦, is slightly
larger than the experimental one for increasing the calculation
efficiency; the azimuthal angle range, ϕ = 13◦, is the same
as that in the experiment.

For fitting with the experimental spectrum, there are two
other parameters included in the simulation: the mean kinetic
energy Ek and the preferential momentum k0. They can be
obtained by fitting the experimental spectrum; the parameters
obtained for C and Ge are given in table 1. The mean
kinetic energy of 108 meV for C used here was derived from
neutron Compton scattering [31]. The FWHM of Ge peak
roughly estimates a value of the mean kinetic energy for Ge
atoms with the classical Maxwell–Boltzmann thermal energy
distribution, and then the value was further corrected by a
Monte Carlo simulation until the calculated FWHM fitted with
the experimental results. The momentum k0 of the nucleus is
considered to be correlated with the atomic number and the
scattering angle but hardly with the incident electron energy.
A unique value of k0 can be obtained in the incident electron
energy range from 10 to 40 keV for a specified element and
scattering angle by using equation (6) with a fitting procedure.

Figure 1 shows the simulated electron energy spectra for a
30 keV beam penetrating a 2 nm Ge layer on a 35 nm carbon
layer sample without taking into account the energy resolution
of the equipment. The upper inset shows clearly that the elastic
peak is split into two broadening peaks corresponding to the
effects of recoil by Ge and C atoms. The lower inset illustrates
the loss spectrum in the energy loss region due to plasmon
excitation in each film. The optical energy loss functions used
here for glassy carbon [32] and Ge [33] have a strong peak
around 20 eV (for Ge, the optical data are absent in the photon
energy range of 10–20 eV); for C there is another weaker peak
present in the energy loss function at about 5.6 eV due to π -
plasmons, which corresponds to the small 6.3 eV peak in the
lower inset of figure 1. In figure 2 the experimental spectra
are compared with the simulated spectra in the classical model
for isotropically vibrating atoms and with the simulated spectra
in the present model for anisotropically vibrating atoms with
the factor k0. It is shown that on introducing the preferential
momentum k0 the correct peak position is obtained. In this
figure and the following figures all the simulated spectra
have been convoluted with Gaussian functions for the electron
beam energy width and for the energy resolution of energy
analyzer.

Figure 1. An example of the Monte Carlo simulated transmission
N(E) electron spectra for a 30 keV electron beam incident normally
on a Ge(2 nm)/C(35 nm) sample at an ideal energy resolution. The
inserts show the quasi-elastic peak (top) and the Ge and C plasmon
losses in eV (bottom).

Figure 2. A comparison on the quasi-elastic electron spectra, for a
30 keV electron beam incident normally on a Ge(2 nm)/C(35 nm)
sample with Ge layer at the exit side, between the experimental
measurement and the Monte Carlo simulations with and without the
position shift correction factor k0.

Figure 3 shows in detail the comparison of the present
Monte Carlo simulation results with the experiments at
different conditions of film thickness, sample orientation and
primary energy. It can be seen that an excellent agreement
on the peak position as well as intensity profile has been
achieved with the parameters obtained, Ēk and k0. As the
quasi-elastic peak is now well split into two peaks the Gaussian
function fitting to the spectra can give the intensity ratio,
AGe/AC, between the areas under the respective Gaussian
component curves while omitting the residual background.
Table 2 presents the detailed comparison on the quantitative
values. Clearly, the treatment of the peak shifting is quite
reasonable in all the cases considered here.

Figure 4 gives the ratio on the elastic peak intensities
between Ge and C, AGe/AC, for different thicknesses
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Figure 3. A comparison of the Monte Carlo simulation results of quasi-elastic peak with the experimental measurements for different
conditions: (a) E0 = 30 keV, θin = 0◦, θout = 45◦, Ge(2 nm)/C(35 nm) with the Ge layer at the exit side, transmission mode; (b) E0 = 30 keV,
θin = 0◦, θout = 45◦, Ge(2 nm)/C(35 nm) with the C layer at the exit side, transmission mode; (c) E0 = 30 keV, θin = 0◦, θout = 45◦,
Ge(0.2 nm)/C(35 nm) with the Ge layer at the exit side, transmission mode; (d) E0 = 30 keV, θin = 22.5◦, θout = 67.5◦, Ge(2 nm)/C(35 nm)
with the Ge layer at the exit side, transmission mode. E0 represents the incident energy; θin and θout denote, respectively, the incident angle
and emission angle of electrons measured from the surface normal.

(0.2–2.0 nm) of a Ge layer on a 35 nm thick carbon layer
sample. A good agreement with the experimental data at the
two ends of the thickness range has been obtained. An exact
linear relation between the ratio and the thickness of the Ge
layer is just as expected. This is because the intensity of Ge
would be proportional to the distance of electron transmission,

or the number of the elastic scattering events is proportional
to the thickness of material that electrons pass through in a
straight line when a film is not too thick.

We have also studied the energy dependence of the elastic
peak profile for the transmission geometry and for a 2 nm Ge
on a 35 nm C sample (Ge is at the exit side). Figure 5(a) shows
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Table 2. Comparison of various quantities (recoil energy loss, E ; full width at half-maximum of the quasi-elastic peak, FWHM; ratio
between the peak areas due to Ge and C atoms, AGe/AC) between the Monte Carlo simulation (MC) (figure 3), the experiments [12] and
simple theoretical analysis [12] by using IMFPs of [28] or [29] for the varied experimental conditions.

(Thickness of Ge film,
primary energy,
incident angle)

E
observed
(eV)

E
MC
(eV)

FWHM
Ge
observed
(eV)

FWHM
Ge
MC
(eV)

FWHM
C
observed
(eV)

FWHM
C
MC
(eV)

Ratio
AGe/AC

observed

Ratio
AGe/AC

MC

Ratio
AGe/AC

theory
IMFP [28]

Ratio
AGe/AC

theory
IMFP [29]

(2 nm, 30 keV, 0◦)
Ge at exit side

0.54 0.553 0.29 0.315 0.86 0.833 0.36 0.363 0.73 0.79

(2 nm, 30 keV, 0◦)
C at exit side

0.54 0.552 0.26 0.318 0.85 0.828 0.17 0.259 0.53 0.48

(0.2 nm, 30 keV, 0◦)
Ge at exit side 0.54 0.548 0.22 0.227 0.85 0.769 0.044 0.042 0.07 0.08
(2 nm, 15 keV, 0◦)
Ge at exit side 0.25 0.254 0.31 0.342 0.59 0.621 0.51 0.580 — —
(2 nm, 30 keV, 22.5◦)
C at exit side 0.53 0.519 0.25 0.227 0.84 0.817 0.09 0.106 0.33 0.23

Figure 4. The dependence of the elastic peak intensity ratio,
AGe/AC, on the thickness of a Ge layer deposited on a C layer of
35 nm thick with the Ge layer on the exit side in the transmission
mode for a normally incident electrons of 30 keV.

the energy dependence of the spectra intensity. Although
the elastic scattering cross section decreases rapidly with
increasing energy so as to reduce elastic scattering signals,
the IMFP increases simultaneously. This behavior of inelastic
scattering allows more signal electrons to be emitted from the
sample. Therefore, there has been no obvious primary energy
tendency of spectra intensity found. However, on lowering
the primary electron energy, the separation of the Ge and C
peaks becomes small; at 15 keV it is even indistinguishable
for the two peaks. Therefore, at lower primary energies
the peak decomposition becomes more questionable, causing
larger fitting error. Figure 5(b) demonstrates the relation of
the intensity ratio AGe/AC to the primary energy. It can be
seen that with increasing primary energy (15–30 keV), the
ratio decreases firstly and then increases; the minimum is at
about 25 keV. The simulation indicates that this minimum is
mostly resulting from multiple-scattering effects. The present
calculation agrees with the experimental results very well,
and greatly improves the previous quantitative results from a
simple analysis [12]. It is worth mentioning that the choice

Figure 5. The incident energy dependence of the calculated (a)
intensity profile and (b) intensity ratio, AGe/AC, of the quasi-elastic
peak of electrons normally incident on a Ge(2 nm)/C(35 nm) sample
with the Ge layer on the exit side in the transmission mode. In (b) the
comparison is also made with the Monte Carlo simulation of single
scattering, available experimental data, the linear model with λin and
the modified linear model with λtr.

of the parameters, Ēk and k0, does not affect the estimation of
the intensity area under the curve. The correct intensity ratio
calculation is largely due to the fair modeling of the electron

6
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elastic and inelastic scattering cross section and the description
of electron transportation.

The experimental fact has shown that the spectral profile
depends strongly on the sample rotation geometry and on the
reflection/transmission mode. In figure 6 both the experiment
and calculation are performed at the condition of fixed value
of scattering angle, 45◦, between the incident beam and the
detection direction, while the sample plane is tilted so that the
incident angle and detection angle change simultaneously. The
sample studied is a C(35 nm)/Ge(2 nm) film. Figures 6(a)
and (b) are for the case where the electron incidence is on the C
film surface, and figures 6(c) and (d) are for electron incidence
on the Ge film surface. At normal incidence of electrons,
the detection is in the transmission mode; by increasing the
incident angle to exceed 45◦ the detection mode is changed to
the reflection one.

Figures 6(a) and (c) thus illustrate the variation of the
intensity profile with the changing of the incident angle. It
can be seen that the calculated spectra profile of the elastic
peak is altered dramatically with the sample tilting from
transmission mode to reflection mode; the variation tendency
of the intensity profile is quite similar to the experimental one.
To be more quantitative, figures 6(b) and (d) plot the incident
angle dependence of the intensity ratio AGe/AC. In figure 6(b),
for the incident angles smaller than 45◦, an electron beam
penetrates the sample film. Thus, both C and Ge signals are
present; the Ge signal intensity will increase with the sample
tilt up to 45◦ of the incident angle, at which the detection is
at the glancing condition so the electrons should pass through
quite a long distance before exiting from the Ge film surface.
Therefore, the absolute intensity of the quasi-elastic peak will
be lowered due to increasing of intensities of competitive
scattering processes, i.e. events of multiple elastic and inelastic
scattering. But the intensity ratio AGe/AC becomes very
large as a detector selects more signal components from those
scattering events due to electron collisions with the exit side
atoms. For the incident angle larger than 45◦, the detection is in
the reflection mode and the backscattered electron signals from
the Ge layer underneath drop suddenly while the signals from
top C surface increase. This variation tendency is consistent
with the experimental observation. In contrast, in figure 6(d),
for the incident angle smaller than 45◦ the detector faces the
C surfaces. Then, the absolute intensities of the quasi-elastic
peak drop with increasing incident angle while more signals
are due to C atoms in the exit side. In the reflection mode for
the incident angles larger than 45◦, the C signals are greatly
reduced. However, a large deviation from the experimental
data is found at 67.5◦. It is noticed that the small value of
the area for the weak C peak, in the denominator of intensity
ratio, may induce a large estimation error.

In the above discussion we have not mentioned in
detail the angular dependence of elastic scattering cross
section. Actually, the differential cross section is atomic
number dependent and the minor difference between two
elements should also affect the calculated result for the
angular dependence of the intensity ratio. We have neglected
the surface excitation effect [34] in this simulation. These
surface excitations are expected to influence the calculated

Figure 6. The incident angle dependence of ((a) and (c)) the
intensity profile and ((b) and (d)) the intensity ratio, AGe/AC, of the
quasi-elastic peak of 30 keV electrons incident on a
Ge(2 nm)/C(35 nm) sample. The detection geometry can be changed
from the transmission mode (left in (a) and (c)) to the reflection
mode (right in (a) and (c)) with the variation of the incident angle
while the angle between the incident beam and detection direction is
fixed at 45◦. In (b) and (d) the comparison is also made with the
available experimental data and simple theoretical analysis results.

7
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intensity of the elastic peak through the strengthening of
the competitive inelastic scattering probabilities [35, 36];
the surface excitation effect becomes important at glancing
incidence/detection condition, but should be negligible for
electrons of such high energy as 30 keV. The contribution
of the surface excitations in the calculation has been further
estimated by comparing the calculated high energy electron
energy loss spectra (HEELS) without considering the surface
excitation effect for the experimental ones [37]. For 40 keV
electrons reflected from an aluminum surface a probability
of just a few per cent for the surface excitations has been
found. While aluminum is a nearly free electron metal with a
prominent surface plasmon excitation, in contrast the influence
of the surface excitations in C and Ge considered here would
be negligible at such high energies.

As can be seen in all of the cases mentioned above, the
present Monte Carlo simulation describes experiments much
better than the linear model. The most likely reason is that
the effects of multiple elastic scattering cannot be neglected
in practice. For an energy loss peak measured at a specific
scattering angle θ , the single-scattering event is for q =
q(θ = θ1) while the double scattering is for q = q1 +
q2 (θ ∼ (θ1, θ2)), where θi is the scattering angle in the
i th event. In figure 7 the Monte Carlo simulation results
reveal that the signals due to the events of multiple elastic
scattering contribute dominantly to the peak intensity. Multiple
elastic scattering affects thus the intensity ratio of the quasi-
elastic peaks, between different elements. For example, on
considering multiple-scattering effects the intensity of the C
peak is increased much more than that of the Ge peak, reducing
the peak ratio AGe/AC (figure 5(b)). The sample condition may
contribute to the remaining minor difference in intensity ratio
between the experiment and calculation.

Figure 7 also shows that the multiple scattering does not
alter the peak shape. This is due to difference in energy
shifts between the approaches (where the events of multiple
elastic scattering are included and where only single-scattering
events are considered) being much smaller than the Doppler
broadening value. For example, the expected maximum energy
difference between single-scattering and the special double-
scattering case with θ1 = θ2 = θ/2 at θ = 45◦ is about
0.14 eV for the C peak at 30 keV. But actually the simulation
indicates that the most probable value for such a difference is
only 0.02 eV. This is simply due to the fact that the dominant
double-scattering events are combinations of one small-angle
scattering event and one large-angle scattering event (θ1 ≈
0, θ2 ≈ θ or θ1 ≈ θ, θ2 ≈ 0) as the differential scattering
cross section is peaked at small scattering angles at such high
energies. Thus, the multiple-scattering events have nearly the
same peak position as the single-scattering event and could not
be experimentally discriminated.

From the above simulation result, it is suggested that the
linear model for single scattering [12, 38] could be improved
by replacing the electron IMFP λin with the transport mean free
path λtr. This is based on the consideration of the attenuation
by events of multiple elastic scattering, which also reduce
the emission probability of the single-scattering signals in
the linear model, in addition to the attenuation by inelastic

Figure 7. Monte Carlo simulation of quasi-elastic peaks but
neglecting inelastic scattering background for a 30 keV electron
beam incident normally on a Ge(2 nm)/C(35 nm) sample with a
Ge layer at the exit side. Left: including multiple-scattering events
(n > 2); right: considering only single-scattering events (n = 1).
The solid line is the total intensity; the dashed and dotted curves
represent, respectively, the contribution by the quasi-elastic scattering
event lastly occurring before emission in the C layer and Ge layer.

scattering event. For λ−1
tr = λ−1

e + λ−1
in , where λe is the

electron elastic mean free path, the attenuation of the signal is
underestimated if only we are considering inelastic attenuation.
As shown in figure 5(b), with such a modification the linear
model presents an intensity ratio curve whose shape is quite
similar to the Monte Carlo simulation and the experimental
results.

Finally we discuss the parameter k0 introduced for the
correction of the position shift of the elastic peak spectra. The
most probable value of Er in equation (5),

Ēr =
[

1 − k0

P

1

sin(θ/2)

]
q2

2M
, (12)

is shifted to a smaller value as compared with Er0 in
equation (2). The net correction |Er| = |Ēr − Er0| =
k0
P

1
sin(θ/2)

q2

2M is proportional to the inverse of mass of the
atom, and smaller for heavier elements as indicated by the
experimental results. By assuming that k0 is constant, about
the incident electron energy, the relative correction value of the
shift, |Er|/Er0 = k0/[P sin(θ/2)], fits the experimental data
reasonably well, at least in the high energy region, as shown by
figure 8. Comparison of figures 8(a) and (b) indicates that k0

is scattering angle dependent. A further theory is expected to
improve this phenomenological analysis.

4. Conclusion

Quasi-elastic electron scattering from an overlayer/substrate
system has been studied using a Monte Carlo simulation
method. By introducing a preferential oriented momentum
k0 for describing the anisotropic vibration of atoms, the recoil
shift for the peak position of the quasi-elastic electron spectra
can be well corrected. Monte Carlo simulations of intensity
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Figure 8. The dependence of the relative shift |Er|/Er0 of the
quasi-elastic peak on the electron energy. The solid line is calculated
using the equation |Er|/Er0 = k0/[P sin(θ/2)], assuming that the
parameter k0 is independent of the electron energy. The solid symbol
represents the experimental data. (a) k0 = 47.7 nm−1, θ = 45◦ [12];
(b) k0 = 9.58 nm−1, θ = 120◦ [13].

profiles of quasi-elastic peak spectra have been carried out for a
Ge/C sample by varying the thickness of the layers, the incident
electron energy and the detection mode. The simulation
results are compared with the experimental measurements at
the same conditions, enabling the discussion of the properties
of the quasi-elastic electron scattering in detail: first, the
intensity of the quasi-elastic electron spectra follows an exact
linear relation with the thickness of the layers; second, the
intensity of the quasi-elastic electron spectra has no simple
relation with the incident electron energy as resulting from
the complex elastic and inelastic scattering property; third, the
relative intensity of the quasi-elastic electron spectra due to
different atoms depends strongly on the incidence/detection
angle and reflection/transmission mode. In most cases our
Monte Carlo simulation describes very well the intensity
profile and, particularly, the quantitative value of the intensity
ratio. It is indicated that the multiple-scattering signals provide
the dominant contribution to the intensity, while many of them
are combinations of small-angle scatterings with one large-
angle scattering. This simulation model is expected to handle

samples like overlayer/substrate, alloy and compound, in the
form of either multilayer film or bulk matrix, and the detection
mode of either reflection or transmission.
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